首页> 外文OA文献 >Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)
【2h】

Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)

机译:具有残余编码器 - 解码器卷积神经网络的低剂量CT   (RED-CNN)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given the potential X-ray radiation risk to the patient, low-dose CT hasattracted a considerable interest in the medical imaging field. The currentmain stream low-dose CT methods include vendor-specific sinogram domainfiltration and iterative reconstruction, but they need to access original rawdata whose formats are not transparent to most users. Due to the difficulty ofmodeling the statistical characteristics in the image domain, the existingmethods for directly processing reconstructed images cannot eliminate imagenoise very well while keeping structural details. Inspired by the idea of deeplearning, here we combine the autoencoder, the deconvolution network, andshortcut connections into the residual encoder-decoder convolutional neuralnetwork (RED-CNN) for low-dose CT imaging. After patch-based training, theproposed RED-CNN achieves a competitive performance relative tothe-state-of-art methods in both simulated and clinical cases. Especially, ourmethod has been favorably evaluated in terms of noise suppression, structuralpreservation and lesion detection.
机译:考虑到对患者潜在的X射线辐射风险,低剂量CT在医学成像领域吸引了相当大的兴趣。当前的主流低剂量CT方法包括特定于供应商的正弦图域过滤和迭代重建,但它们需要访问原始数据,原始数据的格式对大多数用户而言并不透明。由于难以在图像域中对统计特征进行建模,因此,直接处理重构图像的现有方法无法很好地消除图像噪声,同时又保留了结构细节。受深度学习理念的启发,这里我们将自动编码器,反卷积网络和快捷连接组合到残差编码器-解码器卷积神经网络(RED-CNN)中,以进行低剂量CT成像。经过基于补丁的训练后,在模拟和临床案例中,提出的RED-CNN相对于最新方法均具有竞争优势。特别是,我们的方法在噪声抑制,结构保存和病变检测方面得到了良好的评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号